Sparse representation of High Dimensional Data for Classification kitap kapağı
Kitap başlığı:

Sparse representation of High Dimensional Data for Classification

Research and Experiments

VDM Verlag Dr. Müller (2009-03-05 )

Books loader

Omni badge kupun için uygun
ISBN-13:

978-3-639-13299-1

ISBN-10:
3639132998
EAN:
9783639132991
Kitabın dili:
İngilizce
Özet:
In this book you will find the use of sparse Principal Component Analysis (PCA) for representing high dimensional data for classification. Sparse transformation reduces the data volume/dimensionality without loss of critical information, so that it can be processed efficiently and assimilated by a human. We obtained sparse representation of high dimensional dataset using Sparse Principal Component Analysis (SPCA) and Direct formulation of Sparse Principal Component Analysis (DSPCA). Later we performed classification using k Nearest Neighbor (kNN) Method and compared its result with regular PCA. The experiments were performed on hyperspectral data and various datasets obtained from University of California, Irvine (UCI) machine learning dataset repository. The results suggest that sparse data representation is desirable because sparse representation enhances interpretation. It also improves classification performance with certain number of features and in most of the cases classification performance is similar to regular PCA.
Yayınevi:
VDM Verlag Dr. Müller
Websitesi:
http://www.vdm-verlag.de
Yazar:
Salman Siddiqui
Sayfa sayısı:
64
Yayın tarihi:
2009-03-05
Hisse:
Mevcut
Kategori:
Bilişim, BT
Fiyat:
49.00 €
Anahtar kelimeler:
Sparse representation, SPCA, DSPCA, PCA, classification, High Dimensional Data

Books loader

Bültenler

Adyen::amex Adyen::mc Adyen::visa Adyen::cup Adyen::unionpay Paypal Banka Havalesi

  Alışveriş sepetinde 0 ürün var
Sepeti yenile
Loading frontend
LOADING