Обложка Evolutionary Multiobjective Optimization with Gaussian Process Models
Название книги:

Evolutionary Multiobjective Optimization with Gaussian Process Models

LAP LAMBERT Academic Publishing (2015-07-20 )

Books loader

Omni badge имеющий право на ваучер
ISBN-13:

978-3-659-75935-2

ISBN-10:
365975935X
EAN:
9783659759352
Язык Книги:
Английский
Краткое описание:
This book focuses on the field of surrogate-model-based multiobjective evolutionary optimization. It describes the sate-of-the-art concepts and methods, presents various optimization problems and describes current challenges. The main contributions are done for the optimization problems, where solutions are presented with uncertainty. To compare solutions under uncertainty and improve the optimization results the new relations for comparing solutions under uncertainty are defined. These relations reduce the possibility of incorrect comparisons due to the inaccurate approximations. The relations under uncertainty are then used in the new surrogate-model-based multiobjective evolutionary algorithm called GP-DEMO. The algorithm is thoroughly tested on benchmark and real-world problems and the results show that GP-DEMO, in comparison to other multiobjective evolutionary algorithms, produces comparable results while requiring fewer exact evaluations of the original objective functions.
Издательский Дом:
LAP LAMBERT Academic Publishing
Веб-сайт:
https://www.lap-publishing.com/
By (author) :
Miha Mlakar
Количество страниц:
116
Опубликовано:
2015-07-20
Акции:
В наличии
Категория:
Анализ
Цена:
54.90 €
Ключевые слова:
Evolutionary Algorithms, Surrogate models, Relations under uncertainty, Multiobjective optimization

Books loader

Рассылка

Adyen::amex Adyen::mc Adyen::visa Adyen::cup Adyen::unionpay Paypal Банковский перевод

  0 продуктов в корзине
Редактировать корзину
Loading frontend
LOADING