Buchcover von (3+3+2) Warped-Like Product Manifolds With Spin(7) Holonomy
Buchtitel:

(3+3+2) Warped-Like Product Manifolds With Spin(7) Holonomy

LAP LAMBERT Academic Publishing (18.01.2013 )

Books loader

Omni badge gutscheinfähig
ISBN-13:

978-3-659-32546-5

ISBN-10:
3659325465
EAN:
9783659325465
Buchsprache:
Englisch
Klappentext:
In the theory of Riemannian holonomy groups there are two exceptional cases, the holonomy group G_2 in 7-dimensional and the holonomy group Spin(7) in 8-dimensional manifolds. In the present work, we investigate the structure of Riemannian manifolds whose holonomy group is a subgroup of Spin(7) for a special case. Manifolds with Spin(7) holonomy are characterized by the existence of a 4-form, called the Bonan form (Cayley form or Fundamental form), which is self-dual in the Hodge sense, Spin(7) invariant and closed. We review two methods for the construction of the Bonan form, based on the octonionic multiplication and the triple vector cross products on octonions. Here we define “(3+3+2) warped-like product manifolds" as a generalization of multiply warped product manifolds, by allowing the fiber metric to be non block diagonal. In this thesis we prove that the fibre spaces of (3+3+2) warped-like product manifolds are isometric to 3-sphere under some global assumptions.
Verlag:
LAP LAMBERT Academic Publishing
Webseite:
https://www.lap-publishing.com/
von (Autor):
Selman Uguz
Seitenanzahl:
92
Veröffentlicht am:
18.01.2013
Lagerbestand:
Lieferbar
Kategorie:
Geometrie
Preis:
49,00 €
Stichworte:
Holonomy, Spin(7) manifolds, warped and multiply warped product manifold, warped-like product manifolds

Books loader

Newsletter

Adyen::amex Adyen::mc Adyen::visa Adyen::cup Adyen::unionpay Paypal Überweisung

  0 Produkte im Warenkorb
Warenkorb bearbeiten
Loading frontend
LOADING